

Seminar

"KI im Stromnetz – Grundlagen, Theorie und konkrete Anwendungen für Systeme der Künstlichen Intelligenz"

06. - 07. Mai 2026 in Mannheim

Zielsetzung

Ziel des Seminars ist es, einen Überblick über Grundlagen, Konzipierung und Entwicklung von Systemen der Künstlichen Intelligenz (KI) sowie deren Einsatzmöglichkeiten in Stromnetzen zu geben.

Inhalt

Anwendungen der Künstlichen Intelligenz (KI) durchdringen zunehmend viele Lebensbereiche und haben auch in ersten Software-Anwendungen in der elektrischen Energietechnik Einzug gehalten. Heute in der Stromversorgung eingesetzte klassische Software-Lösungen verwenden in aller Regel mathematisch-algorithmische Verfahren. Dagegen basieren die Verfahren der Künstlichen Intelligenz auf datengetriebenen Lösungsansätzen, die klassische Lösungen ersetzen und darüber hinaus Konzeption, Entwicklung und Realisierung neuartiger Lösungen ermöglichen. So können KI-basierte Verfahren z.B. zur Überwachung und Optimierung von Stromverteilnetzen genutzt werden, um einen effizienten und zuverlässigen Netzbetrieb auch bei geringem Digitalisierungsgrad zu ermöglichen. Im Vergleich zu bisherigen Lösungen können KI-basierte Verfahren oftmals präzisere Ergebnisse erzielen.

Das Seminar gibt einen Überblick über Anwendungsfälle heute üblicher mathematischalgorithmischer Verfahren zur Berechnung, Überwachung und Optimierung von Stromnetzen. Es wird aufgezeigt, wie diese Verfahren mit KI-basierten Lösungsansätzen ersetzt und ggfs. erweitert werden können. Der Schwerpunkt liegt in dem Seminar auf der Konzeption, Entwicklung, Training und Anwendung künstlicher neuronaler Netze (KNN).

Es wird erläutert, wie KNN problemorientiert konzipiert und ein Trainingsprozess für überwachtes Lernen durchgeführt werden kann. Zentrale und dezentrale Einsatzkonzepte sowie Beispiele für den Einsatz von KNN im Stromverteilnetzen werden vorgestellt. Auch die Prüfung von KNN z.B. mit Sekundärprüfeinrichtungen oder nur software-basierten Lösungen wird betrachtet.

Abschließend werden zwei konkrete Anwendungsfälle zu KI-Anwendungen im Stromnetz vorgestellt und ein Ausblick auf KI-Systeme in der Forschung sowie auf den AI-Act der EU gegeben.

Zielgruppe

Das Seminar wendet sich an Personen, die bei Stromnetzbetreibern, Planungsbüros, der Industrie im Bereich Netzplanung und -betrieb und im Bereich der Entwicklung von Software-Lösungen für Stromnetze tätig sind.

Seminarleitung

Die wissenschaftliche Seminarleitung übernimmt Herr Prof. Dr.-Ing. Michael Igel (Hochschule für Technik und Wirtschaft, Saarbrücken).

Anmeldung, Kontakt und Information

Bitte nutzen Sie die Onlineanmeldung unter www.fgh-ma.de.

Auf dieser Seite finden Sie zudem die Ansprechpartnerinnen der FGH für diesen Kurs, die Ihnen bei Fragen gerne zur Verfügung stehen.

Teilnahmegebühr

Gebühr bei Anmeldung bis 11.03.2026 Gebühr bei Anmeldung ab 12.03.2025

Mitglieder:1.380 €Mitglied:1.560 €Nichtmitglied:1.660 €Nichtmitglied:1.880 €

Studenten: auf Anfrage nach Verfügbarkeit

Inkludiert sind die Kursunterlagen und die Verpflegung während des Seminars. Bitte überweisen Sie die Teilnahmegebühr erst nach Erhalt der Rechnung auf das dort angegebene Konto.

Veranstaltungsort

Telefon: +49 621 336 500

Fax: +49 621 336 504 499

Radisson Blu Hotel, Mannheim

Q7,27, 68165 Mannheim
Radisson Blu Hotel, Mannheim

Im Tagungshotel ist ein Zimmerkontingent unter dem Stichwort "FGH-Akademie" für 129 € pro Zimmer & Nacht (inklusive Frühstück) bis zum 07.04.2026 reserviert. Bitte buchen Sie selbst.

Programm

Mittwoch, 06. Mai 2026

08:30 h	Empfang	und Kaffee
---------	----------------	------------

09:00 h Begrüßung und Vorstellungsrunde

09:30 h **Einordnung und Überblick**

Prof. Dr. Michael Igel, Hochschule für Technik und Wirtschaft, SaarbrückenAufgaben des Netzbetreibers • Mathematisch-algorithmische Verfahren in
Netzbetrieb und Netzplanung • Datengetriebene Lösungsansätze durch Klbasierte Verfahren • Vor- und Nachteile mathematisch-algorithmischer und
datengetriebener Verfahren • Mögliche Einsatzgebiete von KI-basierten
Verfahren • Grenzen der Anwendung von KI-Systemen

10:15 h Kaffeepause

10:45 h Einsatzkonzepte und Anwendungsfälle von KI-Systemen

Dr. Andreas Winter, energis-Netzgesellschaft mbH, Saarbrücken

Herausforderungen aus Sicht des Netzbetreibers • Die Nervenzelle als biologisches Vorbild von KI-Systemen • KI-basierte Verfahren als Ersatz für klassische und verfügbare Lösungen • Welche neuen Möglichkeiten ergeben sich durch KI-basierte Verfahren? • KI-basierte Netzzustandsüberwachung • KI-basierte Lastflussberechnung • KI-basierte Netzzustandsoptimierung • KI-basierte Kurzschlussortung • KI-basierte Erdschlussortung • Einsatzkonzepte von KI-basierten Systemen • Einbindung in die Daten- und Kommunikationssysteme von Netzbetreibern

Vorführung: KI-basierte Erdschlussortung

11:45 h Frage- und Diskussionsrunde

12:15 h Mittagspause

13:00 h Walk & Talk

14:30 h Konzipierung und Training von KI-Systemen

Dr. Andreas Winter, energis-Netzgesellschaft mbH, Saarbrücken

Künstliche neuronale Netze (KNN) als KI-basiertes System • Entwicklung eines KNN basierend auf einer konkreten Aufgabenstellung • Berücksichtigung dynamischer Netzbedingungen: Umgang mit wechselnden Schaltzuständen, Betriebsmodi (Normal- und Sonderbetrieb) sowie strukturellen Veränderungen (z. B. neue Leitungen) • Digitalisierungsgrad - Herausforderungen im Stromnetz • Entwurf einer problemangepassten KI-Architektur: Auswahl und Festlegung geeigneter Hyperparameter • Training des KI-Modells auf Basis definierter Zielvorgaben • Der Trainingsprozess als Optimierungsproblem: Zielgerichtete Anpassung von Modellparametern • Vorgehen zur Optimierung von Hyperparameterkonfigurationen • Erstellung geeigneter Trainingsdatensätze und Durchführung des Trainings unter Berücksichtigung der Hyperparameteroptimierung

Übung: Entwurf, Training und Validierung eines KNN zur Berechnung einer Sinus-Funktion (unter Anwendung der Skriptsprache Phyton)

16:00 h Implementierung von KNN – Dezentral (Edge Computing) und Zentral (Cloud Computing)

Dr. Andreas Winter, energis-Netzgesellschaft mbH, Saarbrücken

Konzept der SW-Umgebung: Datenverarbeitung und KI-Framework
Anbindung an Mess- und Datensysteme des Netzbetreibers zur
kontinuierlichen Datenversorgung
Nahtlose Systemintegration in bestehende
IT- und OT-Strukturen
Dezentrales Integrationskonzept (Edge Computing):
Umsetzung auf IoT-Hardware, Nutzung quelloffener Komponenten (Open
Source), Einbindung in IP-basierte Kommunikationsnetzwerke (z. B.
Laborumgebung)
Zentrales Konzept (Cloud Computing): Alternative
Implementierung in einer virtualisierten Cloud-Umgebung, Skalierbarkeit und
flexible Ressourcenbereitstellung

- 17:00 h Frage- und Diskussionsrunde
- 17:15 h Ende des 1. Seminar-Tags
- 18:00 h Abendveranstaltung inklusive Abendessen

Donnerstag, 07. Mai 2026

08:30 h	Prüfung von KI-Systemen mit KNN
	Prof. DrIng. Michael Igel, Hochschule für Technik und Wirtschaft, Saarbrücken
	Typprüfung von KI-Systemen im Labor mit einem Netzberechnungsprogramm;
	Prüfung von KI-Systemen mit einer Sekundärprüfeinrichtung • Einsatz von IP-
	basierter Kommunikation mit Controller (Edge-Computing) oder Virtueller Maschine (Cloud-Computing) • Verwendung von Lastflussberechnung mit und
	ohne Lastprofile • Beispiele für Applikationsprüfungen
	Vorführung: Virtuelles Prüfsystem für KI-basierte Systeme (KNN zur
	Netzzustandsschätzung)
09:30 h	Use Case 1:
	Anwendung von Reinforcement Learning im Engpassmanagement
	Philipp Reuber, FGH e.V., Aachen
	Was ist Reinforcement Learning? • Von der klassischen Optimierung zum
	Reinforcement Learning Ansatz • Reward Engineering als zentrale
10.00 b	Herausforderung • Erweiterung zu Multi-Agenten Ansatz
10:00 h	Frage- und Diskussionsrunde
10:15 h	Kaffeepause
10:45 h	Use Case 2:
	Vom Ad-hoc Steuern zur vorausschauenden Netzsteuerung: KI-gestützte Prognosen mit der SGOP
	Lutz Lehmann, VIVAVIS AG, Ettlingen
	Vorausschauende Netzsteuerung • KI-gestützte Prognosen • Machine Learning
	in der Niederspannung • Proaktive Engpassvermeidung
11:15 h	KI-Systeme in der Forschung – Wohin geht die KI-Reise?
	Dr. Boris Brandherm, Deutsches Forschungszentrum für Künstliche Intelligenz
	GmbH, Saarbrücken
	Was ist Künstliche Intelligenz? • Was unterscheidet KI von normaler Software?
	• Welche Herausforderungen ergeben sich daraus an eine KI? • Wo steht die KI
12.15 b	heute? • Forschungsprojekte aus dem Bereich der Elektrischen Energietechnik
12:15 h	Mittagsimbiss
13:15 h	Wohin geht die Reise in den Vorschriften? – Der Al-Act der EU und mehr
12.45 h	Mike Vogt, Fraunhofer IEE, Kassel
13:45 h	Frage- und Diskussionsrunde
14:00 h	Zusammenfassung und Feedbackrunde
14:15 h	Ende des Seminars

Seminarleiter und Referenten

Seminarleiter

Prof. Dr.-Ing. Michael Igel

Leiter des htw saar-Instituts für Elektrische Energiesysteme und der akkreditierten Zertifizierungsstelle für Dezentrale Erzeugungsanlagen der kws GmbH und vom BDEW anerkannter Gutachter.

Hochschule für Technik und Wirtschaft, Saarbrücken

Referenten

Dr. Andreas Winter

Teamleiter Anschlusswesen / Verbandsarbeit

energis-Netzgesellschaft mbH, Saarbrücken

Philipp Reuber

Wissenschaftlicher Mitarbeiter

FGH e.V., Aachen

Lutz Lehmann

Business Development Manager SGOP

VIVAVIS AG, Berlin

Dr. Boris Brandherm

Research Department Cognitive Assistants

DFKI GmbH, Saarbrücken

Mike Vogt

Wissenschaftlicher Mitarbeiter

Fraunhofer IEE, Kassel