

Seminar

"Leistungselektronische Anwendung in elektrischen Netzen"

21. - 23.04.2026

Seligenstadt

Zielsetzung

Die TeilnehmerInnen erhalten einen Überblick über die verschiedenen Anwendungsgebiete leistungselektronischer Komponenten in elektrischen Netzen.

Dabei steht zum einen die Vermittlung grundlegender Zusammenhänge und theoretischer Bausteine zur Systematik von leistungselektrischen Komponenten und Systemen im Vordergrund. Zum anderen werden durch die Darstellung praktischer Anwendungen und Beispiele aus realen Projekten die Auswirkungen auf elektrische Netze sowie deren Planung und Betrieb vermittelt.

Inhalt

Leistungselektronische Bauteile und deren Anwendungen sind ein zentraler Bestandteil moderner elektrischer Energieversorgungssysteme. In der Antriebstechnik sind drehzahlgeregelte Antriebe mit Frequenzumrichtern allgegenwärtig. Im Rahmen des Zubaus erneuerbarer Energien werden Erzeugungsanlagen, die über Umrichter ans Drehstromnetz gekoppelt sind, zunehmend zur vorherrschenden Art der Energieeinspeisung. In der Übertragungstechnik steigt die Bedeutung der Hochspannungsgleichstromübertragung stetig. Auch zur Netzstabilisierung und Erbringung von Systemdienstleistungen kommen leistungselektronische Komponenten in Kompensationsanlagen, Netzfiltern und Speichern heute zunehmend zum Einsatz. Die Auswirkungen dieser Anwendungen auf die Planung und den Betrieb elektrischer Netze sind erheblich.

Das Seminar vermittelt die Grundkenntnisse und Zusammenhänge zum Verständnis und zur Einordnung dieser Entwicklungen. Zunächst wird die Systematik von leistungselektronischen Systemen behandelt und ein Überblick über die verschiedenen leistungselektronischen Bauelemente sowie deren Regelung gegeben. Dabei wird auch auf aktuelle technische Entwicklungen wie z.B. die netzbildende Regelung für Umrichtersysteme eingegangen. Anschließend werden die verschiedenen Anwendungsgebiete leistungselektronischer Komponenten in elektrischen Netzen vorgestellt. Umrichtersysteme in Antriebstechnik, Windenergieanlagen und Photovoltaiksystemen, HGÜ und FACTs werden vertiefend behandelt. Das Verhalten der Komponenten im elektrischen Netz im Kontrast zu den Anforderungen der Anschlussbedingungen steht dabei im Fokus. Weiterhin gibt das Seminar einen Überblick über die Vorgehensweise zur Modellierung von leistungselektronischen Systemen im Rahmen von Netzplanungsprozessen.

Zielgruppe

Netzplaner, Netzbetreiber und Projektierer.

Seminarleitung

Die wissenschaftliche Leitung des Seminars übernimmt Dr.-Ing. Martin Coumont (Schneider Electric GmbH).

Anmeldung, Kontakt und Information

Bitte nutzen Sie die Onlineanmeldung unter www.fgh-ma.de.

Auf dieser Seite finden Sie zudem die Ansprechpartnerinnen der FGH für diesen Kurs, die Ihnen bei Fragen gerne zur Verfügung stehen.

Teilnahmegebühr

Gebühr bei Anmeldung bis 24.02.2026 Gebühr bei Anmeldung ab 25.02.2026

Mitglieder: 1.650 € Mitglied: 1.860 € Nichtmitglied: 1.980 € Nichtmitglied: 2.240 €

Studenten: auf Anfrage nach Verfügbarkeit

Inkludiert sind die Seminarunterlagen, die Verpflegung während des Seminars und die Abendveranstaltung.

Bitte überweisen Sie die Teilnahmegebühr erst nach Erhalt der Rechnung auf das dort angegebene Konto.

Veranstaltungsort

Schneider Electric GmbH

Steinheimer Straße 117 63500 Seligenstadt

Als Übernachtungsmöglichkeiten in der Nähe des Veranstaltungsorts bieten sich folgende Hotels an:

- Landgasthof Neubauer (https://www.landgasthof-neubauer.de/),
- Hotel BalthazarS (https://www.hotelseligenstadt.de/),
- Hotel Elysee (http://www.hotel-elysee.de) und
- Hotel Columbus (https://seligenstadt.twhotels.de/). Zimmerabrufkontingent bis 31.03.26 für 91 €/Nacht verfügbar. Stichwort "FGH Akademie"

Programm

Dienstag, 21. April 2026

08:30 h	Empfang und Begrüßungskaffee
09:00 h	Begrüßung und Vorstellungsrunde
09:30 h	Einführung: Leistungselektronische Anwendungen – Status quo und quo vadis?
	DrIng. Martin Coumont, Schneider Electric GmbH, Seligenstadt Bedeutung leistungselektronischer Anwendungen für elektrische Energieversorgungsnetze • Einsatzgebiete • Auswirkung auf Netz- planung und Netzbetrieb • Seminarinhalt und Seminarziele
10:00 h	Bauelemente und Systematik der Stromrichterschaltungen Fabian Herzog, RWTH Aachen University, Aachen Leistungselektronische Bauelemente • Allgemeine Schaltcharakteristik
10:30 h	Kaffeepause
11:00 h	Bauelemente und Systematik der Stromrichterschaltungen - Fortsetzung
	Fabian Herzog, RWTH Aachen University, Aachen
11:30 h	Netz- und selbstgeführte Stromrichter
	Fabian Herzog, RWTH Aachen University, Aachen Charakterisierung von Stromrichterschaltungen • Netzkommutierte Stromrichter (Passive und aktive Gleich- und Wechselrichter) • Selbstgeführte Stromrichter (Pulsweitenmodulation, Abwärtswandler, Wechselrichter) • Netzrückwirkungen (Blindleistung, Oberschwingungen)
12:30 h	Frage- und Diskussionsrunde
12:45 h	Mittagessen
13:45 h	Spannungseinprägende Umrichterregelung Tim Frieß, TU Darmstadt, Darmstadt
	Merkmale des netzbildenden Verhaltens • Anlagenmodellierung • Regelungstechnischer Aufbau • Vergleich stromeinprägend und spannungseinprägend • Anwendungen und Restriktionen • Resonanzstabilität
15:00 h	Kaffeepause
15:30 h	Stromrichtergespeiste Antriebe DrIng. Viktor Hofmann, Innomotics GmbH, Nürnberg Typische Schaltungen • Systemauswahl und Vorgehen • Netzrückwirkungen und Anforderungen an das Netz • Empfindlichkeit gegenüber kurzzeitigen Spannungseinbrüchen • Entwicklungstendenzen
	Frage- und Diskussionsrunde Ende des 1. Seminartags Abendveranstaltung

08:30 h	FACTS
	DrIng. Simon P. Teeuwsen, Siemens Energy, Erlangen
	Grundschaltungen (serielle/parallele Kompensation) • Design und
	Auslegung (insbesondere SVC und STATCOM) • Blindleistungs- und Spannungsregelung • Pendeldämpfung • Leistungsflusssteuerung •
	Anwendungen und Projekte • Einsatz im Verteilnetzbereich
09:45 h	Hochspannungs-Gleichstrom-Übertragung
331.31.	Prof. DrIng. Athanasios Krontiris, Hochschule Darmstadt
	Drehstrom- vs. Gleichstromübertragung • Anwendungsgebiete für HGÜ
	 ■ HGÜ-Technik: Netzgeführte und selbstgeführte HGÜ ■ Funktionsweise,
	Systemverhalten, Regelprinzipien • Verhalten bei Fehlern im
	Drehstromnetz • Einsatzmöglichkeiten in Drehstromnetzen • Betrieb und Bereitstellung von Systemdienstleistungen • HVDC-
	Leistungsschalter und HVDC-Netze • Beispiele ausgeführter Anlagen
10:15 h	·
10:45 h	Hochspannungs-Gleichstrom-Übertragung (Fortsetzung)
	Prof. DrIng. Athanasios Krontiris, Hochschule Darmstadt
11:30 h	Frage- und Diskussionsrunde
11:45 h	
	DrIng. Martin Coumont, Schneider Electric GmbH, Seligenstadt
	Normen und Richtlinien • Beschreibung charakteristischer Phänomene • Oberschwingungen netzgeführter und selbstgeführter Umrichter •
	Bedeutung der frequenzabhängigen Netzimpedanz • Modellierung
12:45 h	
13:30 h	Walk & Talk
14:30 h	Umrichter für Photovoltaik am NS-/MS-Netz
	Daniel Premm, SMA Solar Technology AG, Niestetal
	Typischer Aufbau • Realisierung von Kraftwerkseigenschaften •
15:45 h	Typischer Umfang von Netzrückwirkungen • Speicherapplikationen
15:45 fi 16:00 h	Kaffeepause Niederspannungsregelung
10.0011	Thomas Schwarz, A. Eberle GmbH & Co. KG, Nürnberg
	Leistungselektronik zur Spannungsregelung • Integration von
	Erneuerbaren • Schnelle Regelung (< 30 ms) • Überspannungsschutz •
	Eigenbedarfs-Regelung
16:45 h	Frage- und Diskussionsrunde
17:00 h	S .
18:00 h	S .
19:00 h	Abendessen

Donnerstag, 23. April 2026

09:00 l	Leistungsfluss- und Kurzschlussstromberechnungen UnivProf. DrIng. Hendrik Vennegeerts, Universität Duisburg-Essen Modellierung FACTS, HGÜ und DEA mit Standardmodellen der Leistungsflussberechnung sowie spezifischen Modellen, Ergebnis- vergleich • Leistungsfluss für Drehstrom- und Gleichstromnetze • Modellierung und Bestimmung der Regelung für leistungsflusssteuernde Betriebsmittel • Modelle für DEA in Kurzschlussstromberechnungen nach IEC 60909 (VDE 0102), Datenversorgung
10:15 l	n Kaffeepause
10:45 l	Netzbildende Batteriespeichersysteme – Erfahrungen aus der Praxis Andreas Knobloch, SMA Solar Technology AG, Niestetal Erfahrungen in Insel- und Verbundnetzanwendungen • Fähigkeiten • Anlagenauslegung • Vergleich mit konventionellen Lösungen • Integration in öffentliche Stromnetze
11:45 l	Abschlussdiskussion und Feedbackrunde
12:15 l	n Mittagsimbiss
13:00 l	n Ende des Seminars

Seminarleiter und Referenten

Seminarleiter

Dr.-Ing. Martin Coumont

Network Planner

Schneider Electric GmbH, Seligenstadt

Referenten

Fabian Herzog

Oberingenieur am Institut für Stromrichtertechnik und Elektrische Antriebe (ISEA)

RWTH Aachen University, Aachen

Tim Frieß

Wissenschaftlicher Mitarbeiter

TU Darmstadt, Darmstadt

Dr.-Ing. Viktor Hofmann

Systemauslegung für Wechselrichter in Netzanwendungen

Innomotics GmbH, Nürnberg

Dr.-Ing. Simon P. Teeuwsen

Abteilungsleitung C&P Studien

Siemens Energy, Erlangen

Prof. Athanasios Krontiris

Professur für Netztechnologie und Leistungselektronik

Hochschule Darmstadt, Darmstadt

Daniel Premm

System Development Engineer

SMA Solar Technology AG, Niestetal

Thomas Schwarz

Produktmanager Niederspannungsregelung LVRSys

A. Eberle GmbH & Co. KG, Nürnberg

Univ. Prof. Dr.-Ing. Hendrik Vennegeerts

Inhaber des Lehrstuhls für elektrische Energiesysteme Universität Duisburg-Essen

Andreas Knobloch

Systemarchitekt

SMA Solar Technology AG, Niestetal